TRADITIONAL BEACH TEMPLATE VS CROSS SHORE SWASH ZONE (CSSZ) PLACEMENT METHODS AT EGMONT KEY, FL

High Silt Content Beneficial Use Placement

Coraggio Maglio, PE, Jase D. Ousley, PG, Manny Vianzon, PE (GLDD), Dr. Katherine Brutsche, Dr. Aubree Hershorin, Millan Mora, PE, & Matt Taylor

US Army Corps of Engineers (USACE)
Engineer Research and Development Center
Coastal and Hydraulics Laboratory
&

USACE Jacksonville District

Great Lakes Dredge & Dock (GLDD)

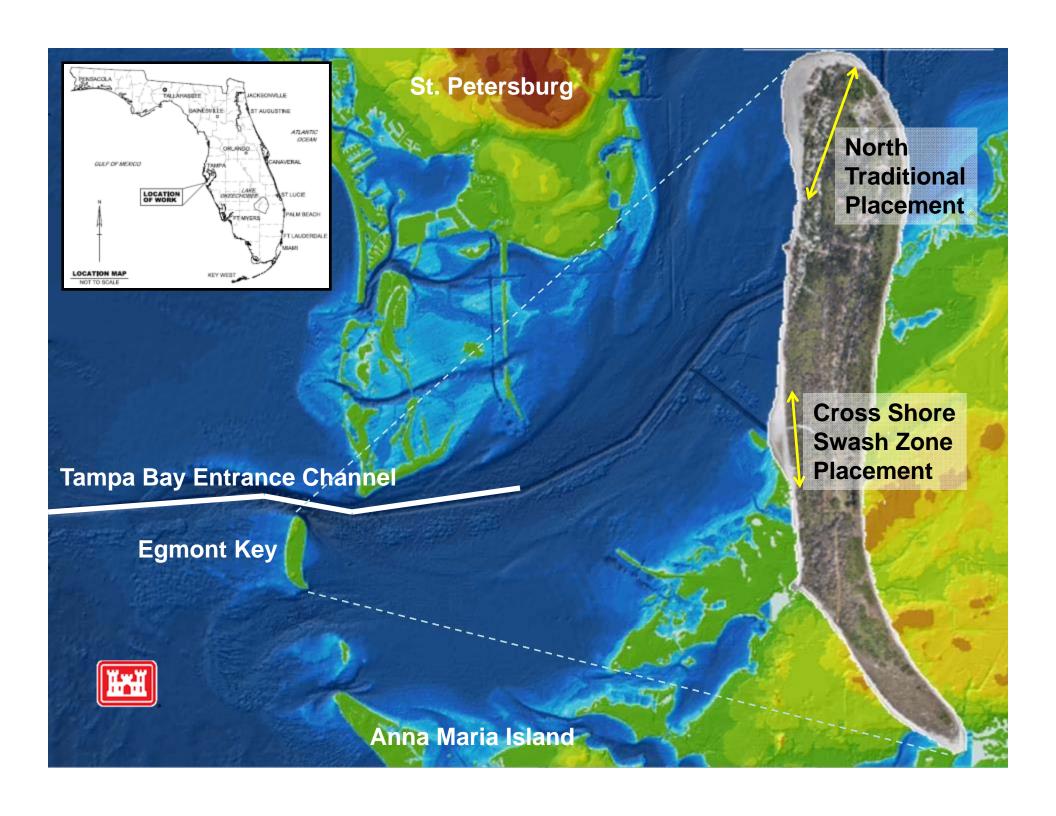
15 October 2015

Outline

Background

- Ideal opportunity for R&D to address environmental concerns and regulations
- Egmont Key National Wildlife Refuge "Sand Rule"
- Material is approx. 20% "fines" (passing 230 sieve)
- Definitions and Example Projects
- Beneficial reuse projects 2001, 2006, and 2011
- Time series aerials

Dredging and Placement


- Volumes
- Compaction Cone Penetrometer
- Mass Balance of "fines"
- Fines Content, Density, Munsell Color
- Light Attenuation and Turbidity
- Sea turtle nesting

Conclusions

- Traditional vs. Cross Shore Swash Zone Placement
- Acknowledgments

Definitions

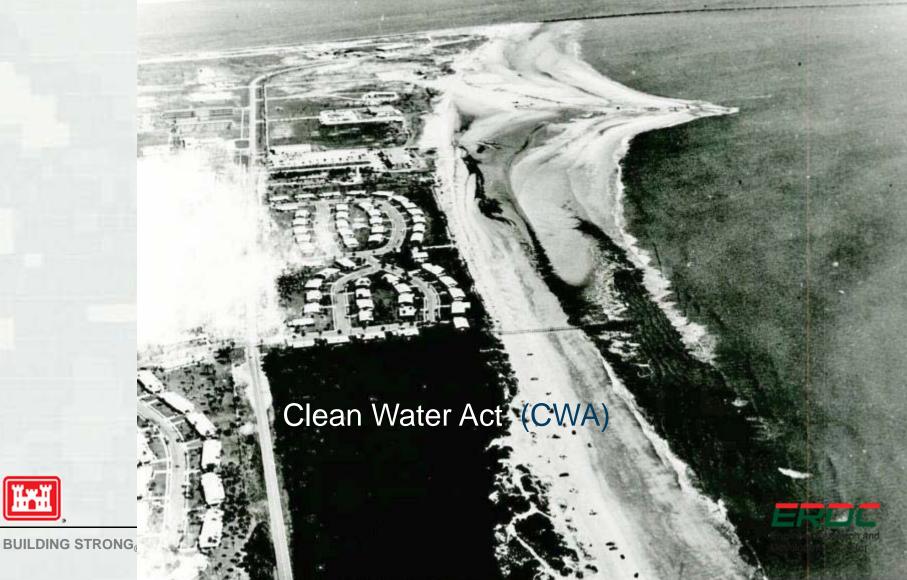
• Traditional Placement – placement of material to "build a beach" using longitudinal dikes to increase settlement. This projects purpose is to create a wide flat dry beach berm.

Definitions

• Cross Shore Swash Zone Placement (CSSZ) – placement of dredged material by discharging material directly into the swash zone until a delta builds and then extending outfall shore perpendicular thus building a "point" (salient) feature.

21 Feb 15

29 Apr 15


ERDC Engineer Research and

Images Courtesy of GLDD

BUILDING STRONG

Case Examples - Mayport 1972

Cross Shore Swash Zone Placement (CSSZ)

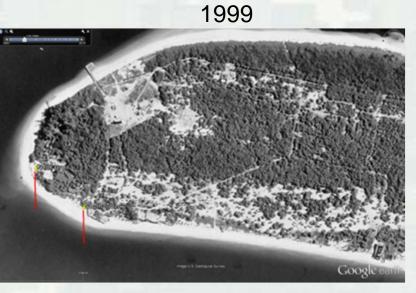
Case Examples — Sand groynes Delfland 2009

- 3 concentrated nourishments 200k m³ each
- Uniformly redistributed over a stretch of coast of about
- 2.5km by the impact of waves and currents
- https://publicwiki.deltares.nl/display/BWN/Building+Block+-+Feeder+beaches+-+Practical+Applications

Case Examples - Delfland Sand Engine 2011

- Concentrated nourishments 28M m³
- Intertidal ponds were intentional for added habitat
- http://deltaproof.stowa.nl/Publicaties/deltafact/Sand_nourishments.aspx?pld=53#COSTS_AND_BENEFITS





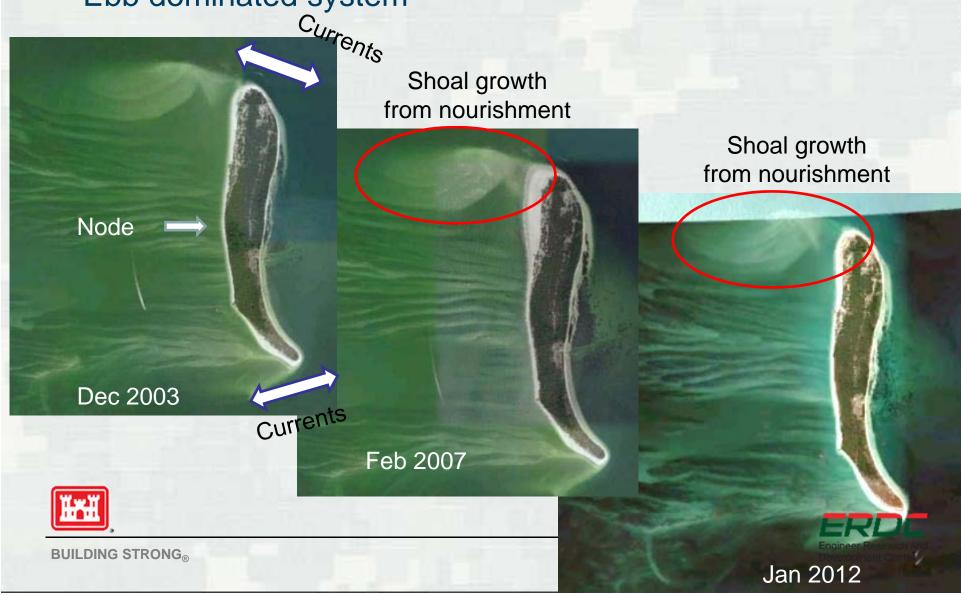
Time-series aerial photos

1942 201492604962

Previous Placement Events

2005

2007



Slides Courtesy of USF

Previous BU - Egmont Key 2001, 2006 & 2011

Ebb dominated system

Dredging and Placement

UAV flight aerial 16 March 2015

Cone Penetrometer

USF Line 17 Pre-Placement

				280 307
Depth (in)	0"-6"	6"-12"	12"-18"	12"-16" 350 500
Min (psi)	100	100	198	360 450 550 450
Max (psi)	580	700	617	443 12"-16" 600
Avg (psi)	293	406	457	500 550 610
Median				450 552
(psi)	295	431	515	12"-16" 570 580 520
# samples	19	19	19	600 500 550
Refusals	1	4	5	12"-16" 160
% Refusal	5%	21%	26%	210 220 160 250 190

	5 Frankling	3/10/2	015 0'-E' 6'-12'	12"-16"
Depth (in)	0"-6"	6"-12"	12"-18"	SSO Refusal SSO
• • •	U U	0 12	12 10	Refutal (shell)
Min (psi)	50	125	200	200
Max (psi)	600	700	600	Returni 500
Avg (psi)	328	482	436	Refusal (shell)
Median				600 Befaral
(psi)	300	500	500	national .
# samples	21	21	21	200 600 406
Refusals	3	6	10	500

14%

29%

Post-Placement

USF Line 6

USF Line 4

Avg.	325	273	198
	USF Line 17	Berm	
	0"-6"	6"-12"	12"-16"
	340	700	500
	280	650	630
	310	640	450
	290	660	560
	300	660	500
	250	670	450
Avg.	295	663	515
	USF Line 17	Foreshore	
	0"-6"	6"-12"	12"-16"
	450	630	650
	450	560	500
	410	650	490
	370	450	460
	340	470	500
	370	500	550
Avg.	398	543	525
	USF Line 17	*Dune	
	0"-6"	6"-12"	12"-16"
	570	570	730

% Refusal

• Increase in refusals due to shell hash areas

ш	т,		•	т
Ш	118		п	
ш		•		
ш	٠.	ш.		٦

	200	Retusal	430
Avg.	466	557	617
*Dune is	a relic fill, now a	soil with higher	elevation veget
	11/20/2014		
1	0°-6°	6"-12"	12"-16"
2	580	Refusal (shell)	
3	100	200	Refusal (shell)
4	360	590	580
5	450	500	300
	11/21/2014		
6	150	100	400
7	150	350	425
8	200	600	Refusal
9	250	700	Refusal
10	250	200	Refusal
11	300	500	Refusal

48%

Mass Balance – Egmont Key 2014

Tampa Harbor MD - Egmont Key 2014				
	# of	Sample by weight Fines		
	Samples	(passing 230 sieve)		
In-situ Channel	80	20.7%		
Discharge Slurry	27	18.4% *		
Swash zone	27	17.5%		
Beach samples	22	0.5%		

Assumptions

- 100% slurry water conveyed to the wash zone
- Slurry and swash zone sampling a closed system

Relationships

 Swash Zone samples carried 13.2% of the Discharge Slurry fines out of the beach template, thus leaving 5.2% on the beach.

*Sampling methods at discharge slurry not ideal

Fines Content and Density

Tampa Harbor MD - Egmont Key 2014			
	# of	Avg. % by wt.	
	Samples	passing 230 sieve	
In-situ	80	20.7	
pre-Beach	6	0.03	
post-Dredged	21	0.51	
Traditional	14	0.52*	
CSSZ	7	0.49 *	

	# of	Value avg.	%
Density	Samples	(kg/m3)	Greator
pre-Beach	7	1405.1	0.0%
post-Dredged	17	1471.6	4.7%
Traditional	11	1476.0	5.0%
CSSZ	6	1463.5	4.2%

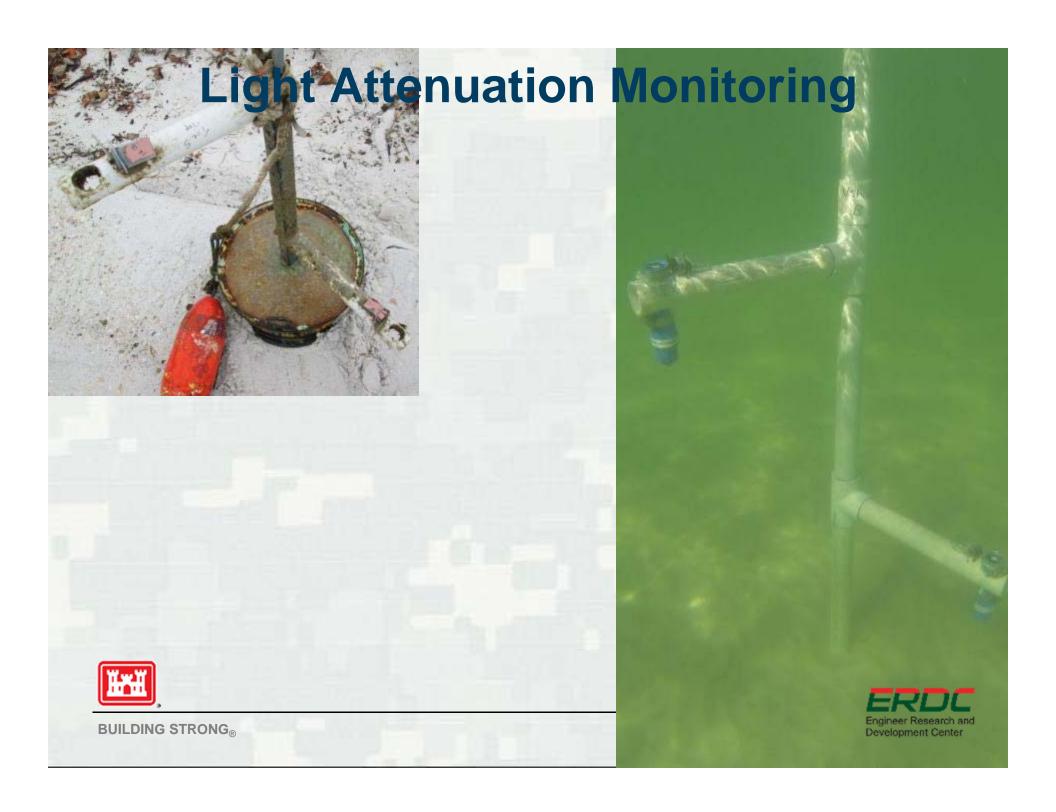
*Sampling occurred within 72 hours of placement completion

Munsell Color

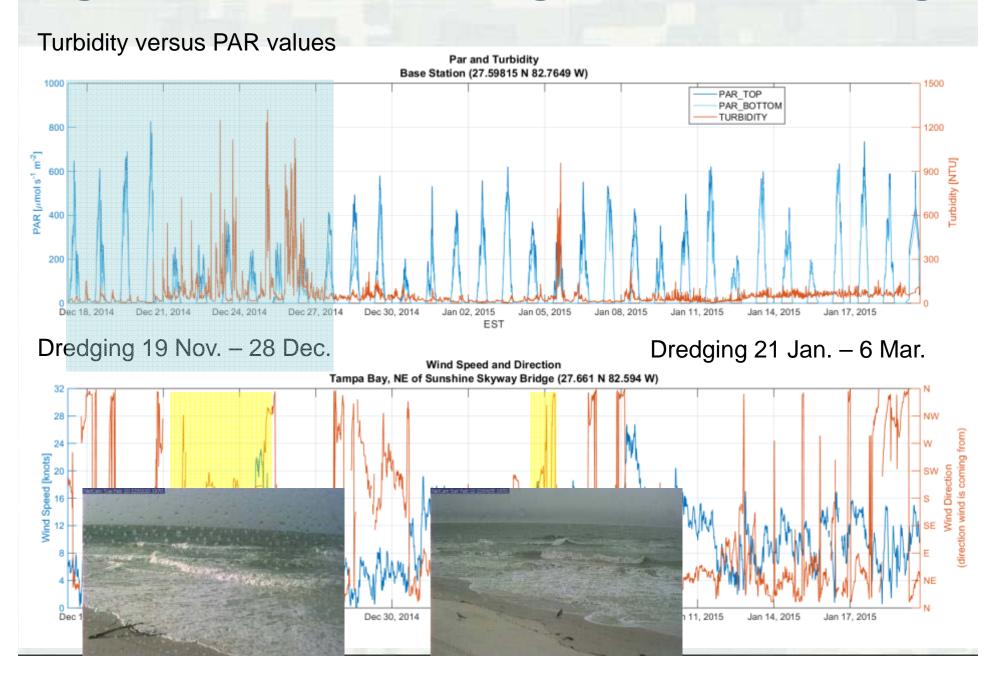
Tampa Harbor MD - Egmont Key 2014				
	# of	Value		
	Samples	avg.		
In-situ	80	4.36*		
pre-Beach	13	5.9		
post-Dredged	24	5.3		
Traditional	16	5.0		
CSSZ	8	5.9		

*Munsell color value<5 unacceptable for beach placement in Florida

NOTES: Triplicate measurements of hue, value, and chroma were collected from three areas on each moist sand sample using a digital colorimeter (CR-400, Konica Minolta, Osaka, Japan).


> Engineer Research and **Development Center**

Light Attenuation Long-term Monitoring


Egmont Key, FL Long-term Deployment Map 14 Nov – 15 Dec

Light Attenuation Long-term Monitoring

Sea Turtle Nesting 2015

Nesting as of 16 August 2015

CSSZ Drawbacks vs. Traditional Placement

Issues

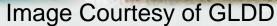
- Material is not immediately visible to public
- Remediation for unacceptable material far more difficult
- Egmont Key not identical to other projects, low energy, with inlets
- Each contractor's crew has their preferred operational techniques: longitudinal dike length, equipment, and methodology

Risks

 If parameters imposed on nearshore placement are more restrictive this placement method could become more expensive than traditional beach placement

- Project shutdowns for turbidity
 - Instantaneous vs. chronic

CSSZ Benefits vs. Traditional Placement


Less linear feet of beach impacted for equivalent volume

Reduced environmental Impacts

- Turtle nest relocations
- Ponding
- Cementation
- Munsell Color
- Shorebird impacts
- Lower cost
 - Construction less beach equipment
 - Reduced pipeline extensions
 - Maintenance less escarpment, tilling
- Reduced beach traditional use impacts
 - Sunbathing and Water sports
- Another tool in the BU toolbox
- Purely performance based regulations
 - More beneficial reuse
 - Lower costs better bids due to more

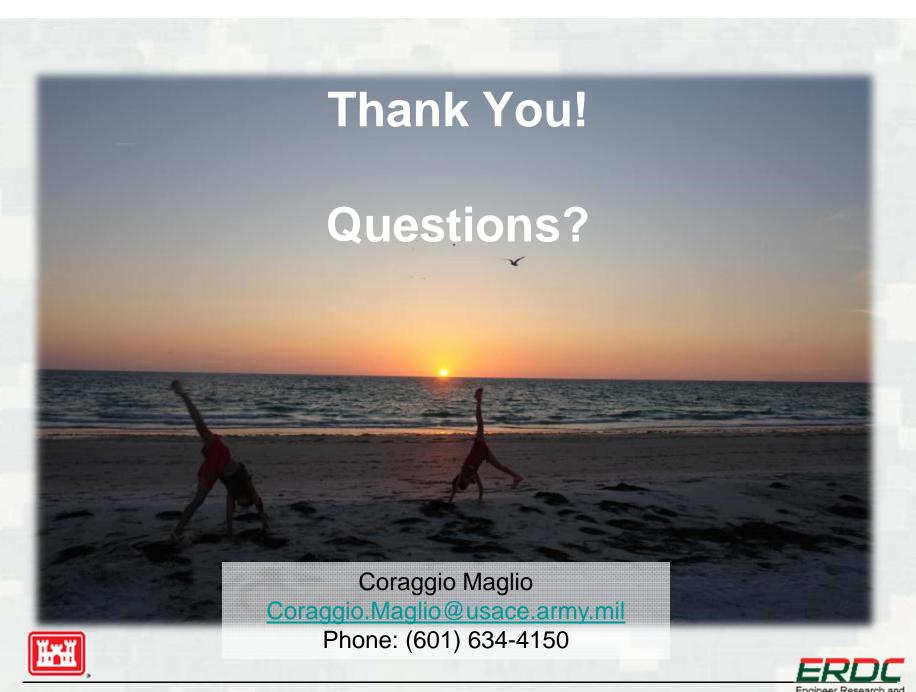
equipment able to perform work

Conclusions

- CSSZ placement operations within intent of "Sand Rule" – reasonable assurance
- CSSZ material spread longshore very quickly
- Grain Size sampling indicates significant "fines" losses
 - 2.4% of original (in-situ) "fines" remaining on beach = 0.5% total
 - 98% of "fines" lost
- Munsell Color and Compaction similar to pre-conditions
- Better RSM practice, better environmental practice, and better economic practice
- Engineering with Nature (EwN)

BUILDING STRONG® Image Courtesy of GLDD

Acknowledgments


Great Lakes Dredge and Dock — Mr. Manny Vianzon, Ms. Lynn Nietfeld, Ms. Kate Mason, Mr. Michael Tolivar, Mr. Robert Ramsdell III, Mr. Bill Hanson University of South Florida — Dr. Ping Wang, Mr. Zach Taylor, Mr. Mark Horwitz U.S. Fish and Wildlife Service — Mr. Peter Plage and Mr. Stan Garner Florida Department of Environmental Protection — Mr. Tom Watson Tampa Bay Pilots Association — Ms. Leslie Head Florida Fish and Wildlife Conservation Commission — Ms. Robbin Trindell USACE Tampa Field Office — Mr. Andy Cummings, Ms. Tina Underwood, Ms. Erin Duffy USACE Jacksonville District — Mr. Bryan Merrill, Mr. Mike Hensch, Mr. Vic Wilhelm, Mr. Tom Spencer.

USACE Engineer Research and Development Center - Dr. Katherine Brutsché, Mr. Matthew Taylor, Mr. John Bull, Ms. Cheryl Pollock, Dr. Deborah Shafer, Mr. Tommy Kirkland, Dr. Jacob Berkowitz, Mr. Jason Pietroski

U.S. Coast Guard - Mr. Darren Pauly, Mr. Ivan Meneses

Development Center

